Mbed OS Reference
Loading...
Searching...
No Matches
ecp_internal.h
Go to the documentation of this file.
1/**
2 * \file ecp_internal.h
3 *
4 * \brief Function declarations for alternative implementation of elliptic curve
5 * point arithmetic.
6 */
7/*
8 * Copyright The Mbed TLS Contributors
9 * SPDX-License-Identifier: Apache-2.0
10 *
11 * Licensed under the Apache License, Version 2.0 (the "License"); you may
12 * not use this file except in compliance with the License.
13 * You may obtain a copy of the License at
14 *
15 * http://www.apache.org/licenses/LICENSE-2.0
16 *
17 * Unless required by applicable law or agreed to in writing, software
18 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
19 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
20 * See the License for the specific language governing permissions and
21 * limitations under the License.
22 */
23
24/*
25 * References:
26 *
27 * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records.
28 * <http://cr.yp.to/ecdh/curve25519-20060209.pdf>
29 *
30 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
31 * for elliptic curve cryptosystems. In : Cryptographic Hardware and
32 * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
33 * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
34 *
35 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
36 * render ECC resistant against Side Channel Attacks. IACR Cryptology
37 * ePrint Archive, 2004, vol. 2004, p. 342.
38 * <http://eprint.iacr.org/2004/342.pdf>
39 *
40 * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
41 * <http://www.secg.org/sec2-v2.pdf>
42 *
43 * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic
44 * Curve Cryptography.
45 *
46 * [6] Digital Signature Standard (DSS), FIPS 186-4.
47 * <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>
48 *
49 * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer
50 * Security (TLS), RFC 4492.
51 * <https://tools.ietf.org/search/rfc4492>
52 *
53 * [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>
54 *
55 * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory.
56 * Springer Science & Business Media, 1 Aug 2000
57 */
58
59#ifndef MBEDTLS_ECP_INTERNAL_H
60#define MBEDTLS_ECP_INTERNAL_H
61
62#if !defined(MBEDTLS_CONFIG_FILE)
63#include "mbedtls/config.h"
64#else
65#include MBEDTLS_CONFIG_FILE
66#endif
67
68#if defined(MBEDTLS_ECP_INTERNAL_ALT)
69
70/**
71 * \brief Indicate if the Elliptic Curve Point module extension can
72 * handle the group.
73 *
74 * \param grp The pointer to the elliptic curve group that will be the
75 * basis of the cryptographic computations.
76 *
77 * \return Non-zero if successful.
78 */
79unsigned char mbedtls_internal_ecp_grp_capable( const mbedtls_ecp_group *grp );
80
81/**
82 * \brief Initialise the Elliptic Curve Point module extension.
83 *
84 * If mbedtls_internal_ecp_grp_capable returns true for a
85 * group, this function has to be able to initialise the
86 * module for it.
87 *
88 * This module can be a driver to a crypto hardware
89 * accelerator, for which this could be an initialise function.
90 *
91 * \param grp The pointer to the group the module needs to be
92 * initialised for.
93 *
94 * \return 0 if successful.
95 */
96int mbedtls_internal_ecp_init( const mbedtls_ecp_group *grp );
97
98/**
99 * \brief Frees and deallocates the Elliptic Curve Point module
100 * extension.
101 *
102 * \param grp The pointer to the group the module was initialised for.
103 */
104void mbedtls_internal_ecp_free( const mbedtls_ecp_group *grp );
105
106#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
107
108#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
109/**
110 * \brief Randomize jacobian coordinates:
111 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l.
112 *
113 * \param grp Pointer to the group representing the curve.
114 *
115 * \param pt The point on the curve to be randomised, given with Jacobian
116 * coordinates.
117 *
118 * \param f_rng A function pointer to the random number generator.
119 *
120 * \param p_rng A pointer to the random number generator state.
121 *
122 * \return 0 if successful.
123 */
124int mbedtls_internal_ecp_randomize_jac( const mbedtls_ecp_group *grp,
125 mbedtls_ecp_point *pt, int (*f_rng)(void *, unsigned char *, size_t),
126 void *p_rng );
127#endif
128
129#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
130/**
131 * \brief Addition: R = P + Q, mixed affine-Jacobian coordinates.
132 *
133 * The coordinates of Q must be normalized (= affine),
134 * but those of P don't need to. R is not normalized.
135 *
136 * This function is used only as a subrutine of
137 * ecp_mul_comb().
138 *
139 * Special cases: (1) P or Q is zero, (2) R is zero,
140 * (3) P == Q.
141 * None of these cases can happen as intermediate step in
142 * ecp_mul_comb():
143 * - at each step, P, Q and R are multiples of the base
144 * point, the factor being less than its order, so none of
145 * them is zero;
146 * - Q is an odd multiple of the base point, P an even
147 * multiple, due to the choice of precomputed points in the
148 * modified comb method.
149 * So branches for these cases do not leak secret information.
150 *
151 * We accept Q->Z being unset (saving memory in tables) as
152 * meaning 1.
153 *
154 * Cost in field operations if done by [5] 3.22:
155 * 1A := 8M + 3S
156 *
157 * \param grp Pointer to the group representing the curve.
158 *
159 * \param R Pointer to a point structure to hold the result.
160 *
161 * \param P Pointer to the first summand, given with Jacobian
162 * coordinates
163 *
164 * \param Q Pointer to the second summand, given with affine
165 * coordinates.
166 *
167 * \return 0 if successful.
168 */
169int mbedtls_internal_ecp_add_mixed( const mbedtls_ecp_group *grp,
171 const mbedtls_ecp_point *Q );
172#endif
173
174/**
175 * \brief Point doubling R = 2 P, Jacobian coordinates.
176 *
177 * Cost: 1D := 3M + 4S (A == 0)
178 * 4M + 4S (A == -3)
179 * 3M + 6S + 1a otherwise
180 * when the implementation is based on the "dbl-1998-cmo-2"
181 * doubling formulas in [8] and standard optimizations are
182 * applied when curve parameter A is one of { 0, -3 }.
183 *
184 * \param grp Pointer to the group representing the curve.
185 *
186 * \param R Pointer to a point structure to hold the result.
187 *
188 * \param P Pointer to the point that has to be doubled, given with
189 * Jacobian coordinates.
190 *
191 * \return 0 if successful.
192 */
193#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
194int mbedtls_internal_ecp_double_jac( const mbedtls_ecp_group *grp,
196#endif
197
198/**
199 * \brief Normalize jacobian coordinates of an array of (pointers to)
200 * points.
201 *
202 * Using Montgomery's trick to perform only one inversion mod P
203 * the cost is:
204 * 1N(t) := 1I + (6t - 3)M + 1S
205 * (See for example Algorithm 10.3.4. in [9])
206 *
207 * This function is used only as a subrutine of
208 * ecp_mul_comb().
209 *
210 * Warning: fails (returning an error) if one of the points is
211 * zero!
212 * This should never happen, see choice of w in ecp_mul_comb().
213 *
214 * \param grp Pointer to the group representing the curve.
215 *
216 * \param T Array of pointers to the points to normalise.
217 *
218 * \param t_len Number of elements in the array.
219 *
220 * \return 0 if successful,
221 * an error if one of the points is zero.
222 */
223#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
224int mbedtls_internal_ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
225 mbedtls_ecp_point *T[], size_t t_len );
226#endif
227
228/**
229 * \brief Normalize jacobian coordinates so that Z == 0 || Z == 1.
230 *
231 * Cost in field operations if done by [5] 3.2.1:
232 * 1N := 1I + 3M + 1S
233 *
234 * \param grp Pointer to the group representing the curve.
235 *
236 * \param pt pointer to the point to be normalised. This is an
237 * input/output parameter.
238 *
239 * \return 0 if successful.
240 */
241#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
242int mbedtls_internal_ecp_normalize_jac( const mbedtls_ecp_group *grp,
243 mbedtls_ecp_point *pt );
244#endif
245
246#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
247
248#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
249
250#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
251int mbedtls_internal_ecp_double_add_mxz( const mbedtls_ecp_group *grp,
253 const mbedtls_ecp_point *Q, const mbedtls_mpi *d );
254#endif
255
256/**
257 * \brief Randomize projective x/z coordinates:
258 * (X, Z) -> (l X, l Z) for random l
259 *
260 * \param grp pointer to the group representing the curve
261 *
262 * \param P the point on the curve to be randomised given with
263 * projective coordinates. This is an input/output parameter.
264 *
265 * \param f_rng a function pointer to the random number generator
266 *
267 * \param p_rng a pointer to the random number generator state
268 *
269 * \return 0 if successful
270 */
271#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
272int mbedtls_internal_ecp_randomize_mxz( const mbedtls_ecp_group *grp,
273 mbedtls_ecp_point *P, int (*f_rng)(void *, unsigned char *, size_t),
274 void *p_rng );
275#endif
276
277/**
278 * \brief Normalize Montgomery x/z coordinates: X = X/Z, Z = 1.
279 *
280 * \param grp pointer to the group representing the curve
281 *
282 * \param P pointer to the point to be normalised. This is an
283 * input/output parameter.
284 *
285 * \return 0 if successful
286 */
287#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
288int mbedtls_internal_ecp_normalize_mxz( const mbedtls_ecp_group *grp,
290#endif
291
292#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
293
294#endif /* MBEDTLS_ECP_INTERNAL_ALT */
295
296#endif /* ecp_internal.h */
297
Configuration options (set of defines)
The ECP group structure.
The ECP point structure, in Jacobian coordinates.
MPI structure.
Definition: bignum.h:185